Login

Dr. Anja Dieckmann

Head of Behavioral Science

Psychologist Anja Dieckmann is interested in the manifold data collection approaches that can be used to capture consumer emotion, cognition and behavior. Her projects include the development of new instruments to capture emotions, implicit attitude measurement, and modelling of purchase decision processes. Before joining GfK Verein, she was a research fellow at the Max Planck Institute for Human Development in Berlin, where she did her PhD on the topic of simple decision heuristics.

Topics:

  • Methods for capturing emotions, with a focus on the automatic detection of facial expressions
  • Purchase decision processes
  • Implicit attitude measurement
  • Neuromarketing

Professional history:

  • GfK Verein, Fundamental Research
  • Max Planck Institute for Human Development, Berlin, Center for Adaptive Behavior and Cognition
  • Boston Consulting Group, Munich
  • M.A. in Psychology at the University of Würzburg

Selected Publications:

  • Dieckmann, A., Unfried, M., Garbas J., Mortillaro, M. (2017), Automatic analysis of facial expressions in an advertising test with Chinese respondents, GfK Verein Working Paper Series, No. 5 / 2017.
  • Dieckmann, A., Grimm, V., Unfried, M., Utikal, V., & Valmasoni, L. (2016). On trust in honesty and volunteering among Europeans: Cross-country evidence on perceptions and behavior. European Economic Review, 90, 225-253.
  • Frank, R., Unfried, M., Schreder, R. & Dieckmann, A. (2016). Ethical textile consumption: Only a question of selflessness? Marketing Intelligence Review, 8(1), 52-58.
  • Pedroni, A., Mérillat, S., Dieckmann, A., Bosch, V., & Jäncke, L. (2016).  Brand preferences modulate neural activity during expectation and evaluation of an uncertain reward. GfK Working Paper Series, No. 4 / 2016.
  • Dieckmann, A. & Unfried, M. (2014). Writ Large on Your Face: Observing Emotions Using Automatic Facial Analysis. Marketing Intelligence Review, 6(1), 52-58.
  • Garbas, J.-U., Ruf, T., Unfried, M. & Dieckmann, A. (2013). Towards robust real-time valence recognition from facial expressions for market research applications. Proceedings of the Humaine Association Conference on Affective Computing and Intelligent Interaction, 2013, 570-575.
  • Gigerenzer, G., Dieckmann, A. & Gaissmaier, W. (2012). Efficient cognition through limited search. In ABC Research Group (Ed.), P. M. Todd & G. Gigerenzer (Eds.), Ecological rationality. Intelligence in the world (pp. 241-273). New York: Oxford University Press.
  • Mata, J., Lippke, S., Dieckmann, A., & Todd, P. M. (2011). Meat label information: Effects of separate versus conjoint presentation on product evaluation. Journal of Applied Social Psychology, 41, 1947-1957.
  • Dieckmann, A., Dippold, K. & Dietrich, H. (2009). Compensatory versus noncompensatory models for predicting consumer preferences. Judgment and Decision Making, 4, 200-213.
  • Hupp, O., Gröppel-Klein, A., Dieckmann, A., Broeckelmann, P., & Walter, K. (2008). Beyond verbal scales: measurement of emotions in advertising effectiveness research. Yearbook of Marketing and Consumer Research, 6, 72-99.
  • Koeneke, S., Pedroni, A. F., Dieckmann, A., Bosch, V., & Jäncke, L. (2008). Individual preferences modulate incentive values: Evidence from functional MRI. Behavioral and brain functions: BBF, 4, 55.
  • Dieckmann, A. & Rieskamp, J. (2007). The influence of information redundancy on probabilistic inferences. Memory & Cognition, 35 (7), 1801-1813.
  • Dieckmann, A., & Krauss, S. (2005). Wenn weniger Wissen mehr sein kann: Einfache Heuristiken zur psychologischen Entscheidungsfindung. [When less knowledge can be more: Simple heuristics for psychological decision making.] Zeitschrift für Erziehungswissenschaft, 8(2), 187-201.
  • Dieckmann, A., & Todd, P. M. (2005). Simple ways to construct search orders. In K., Forbus,D., Gentner,T. Regier, (Eds.), Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society (pp. 309-314). Mahwah, NJ: Erlbaum.
  • Mata, J., Dieckmann, A., & Gigerenzer, G. (2005). Verständliche Risikokommunikation, leicht gemacht – Oder: Wie man verwirrende Wahrscheinlichkeitsangaben vermeidet. [Comprehensible risk communication made easy – or: How to avoid confusing probability statements.] Zeitschrift für Allgemeinmedizin, 81, 537-43.
  • Todd, P., & Dieckmann, A. (2004). Heuristics for ordering cue search in decision making. In L. K. Saul, Y. Weiss & L. Bottou (Eds.), Advances in Neural Information Processing Systems 17 (pp. 1393-1400). Cambridge, MA: MIT Press.

Dr. Anja Dieckmann