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Improving signal detection in software-based facial
expression analysis

Matthias Unfried∗† Markus Iwanczok‡

Abstract— Algorithmic and equipment-based procedures for emotion detection are often
afflicted by measurement error or signal noise. In this paper, we analyze the signal-noise-
relation of software for automated facial expression analysis used to measure emotional
response to marketing stimuli. We isolate the noise and discuss, apply, and evaluate
several methods for reducing the noise. Our results show that noise is a challenge in
automated analysis of facial movement data, but can be reduced by applying fairly simple
methods. Using data from a real market research study we show that noise can be reduced
to a negligible level.
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1 Software-based emotion
detection

Passive data collection methods have been growing over
the last few years and decades. Especially in market
research, these methods are often applied alongside tra-
ditional questionnaires in order to augment the analysis
of consumer response with direct measures of experience.
It is particularly difficult to reliably ascertain emotional
reactions (e.g., for advertising tests and usability studies)
through direct questionnaires. For this reason, a num-
ber of methods have been developed in recent years for
directly capturing emotional reactions. One area in this
field addresses the inference of emotional reactions by
analyzing facial expressions.
Most of the methods for automatic detection of emo-

tional reactions from facial movements are based on the
same principle. Algorithms are used to extract partic-
ular facial features from images and video recordings of
respondents. These are used to either assign the facial ex-
pression directly to a specific emotion (e.g., anger) or to
an “action unit” (c.f. Ekman and Friesen, 1978), which is
in turn used to infer particular emotional reactions. Dif-
ferent algorithms exist both for extraction of features and
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for classification. However, a common feature of both
types of algorithms is that large databases comprising
annotated images are necessary to train them in order to
reliably classify the recorded facial expressions (c.f., e.g.,
Pantic and Rothkrantz, 2003; Zeng et al., 2009).
The software GfK EMO Scan was developed specifi-

cally for use in market research. It determines the va-
lence of facial expressions from webcam images or video
recordings as a measure of emotional experience (Gar-
bas et al., 2013). The software is based on a combina-
tion of the SHORE facial expression recognition analyzer
(Küblbeck and Ernst, 2006; Küblbeck et al., 2009; Ruf
et al., 2011) and a valence detector which was trained
with a database that includes several thousand images
of different emotional facial expressions.
Analysis of video recordings with the software entails

splitting them into individual images (frames) and deter-
mining a valence value for each frame. Depending on the
frame rate of the recording, this can generate up to 30
valence values per second. The video recordings are then
calibrated to the respondent’s neutral facial expression.
However, as is the case for most equipment-based and

algorithmic methods, factors that degrade the image
quality (e.g., image compression, poor lighting, etc.) can
result in noise. Under the term noise we subsume mea-
surements which are triggered by one or more quality-
degrading factors but not by the actual facial response.
In order to investigate and quantify more precisely, a
robustness test of the analysis software presented above
was conducted.
The aim of this paper is to quantify the magnitude

of noise more precisely, investigate the influence of noise
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on the results and find suitable methods for reducing or
even eliminating it.
To this end, we examine the determinants of noise

more closely and isolate the noise from the real signal
in data that were collected for this purpose in a test sce-
nario. Subsequently, a number of methods will be pre-
sented which are able to reduce noise significantly such
that it statistically disappears. The results of the test
scenario are compared with data from a real study to in-
vestigate the relevance of noise for software application in
market research. The paper closes with some recommen-
dations of methods which should be used for smoothing
the data and factors which should be considered when
interpreting the data.

2 Determinants of noise
A wide range of factors can cause and influence noise.
In principle, a distinction can be made between software
and hardware factors of influence. However, all factors
presented below can potentially impact the image quality
and detection results.

2.1 Software-related factors
Video codec
A video codec is software that encodes and decodes

digital videos. To manage the amount of data to be
transferred, online videos (streaming/live streaming) are
often coded in such a way that a certain loss in quality
occurs. The Sorenson Spark (H.263 model), the H.264
and the VP6 on2 codec for online Adobe Flash applica-
tions are the most common codecs for this purpose.
The frequency of so called key frames is a decisive fac-

tor in the creation of noise. Key frames are frames which
are transmitted unmodified; all frames between the key
frames are only interpolated. This interpolation then
produces artifacts, which can vary for each interpolated
frame. Reducing the time between key frames reduces
noise, while increasing the key frame distance amplifies
the noise. However, it should be taken into account that
reducing the distance increases the quantity of data that
needs to be transferred (c.f., e.g., Slepian and Wolf, 1973;
Wyner and Ziv, 1976).

Bit rate
The bit rate describes the data throughput within a

given period of time (e.g., bits per second). Video mate-
rial can be created and sent with a dynamic or static bit
rate.
With a static bit rate, the data volume transferred

always remains constant. This can result in limitations
for signal transfer depending on the internet connection.
For the variable bit rate (VBR, dynamic streaming),

the video material is analyzed and a higher bit rate is
assigned to areas in the stream where the image changes
more than those where the image does not change as
much. This allows image and transmission quality to be

higher when internet connection speed is comparatively
low.

Video resolution
The size of the face in the video also impacts signal

quality and essentially depends on the video resolution.
If the face is smaller, fewer details can be captured. If
resolution is very low, contours of the face, for example,
can be extremely out of focus although the level of blur-
ring can vary across the image. Generally, this results in
highly grainy images, although the area where the image
is grainy can vary over time, often in conjunction with
image compression and definition of key frames.
In order to create satisfactory results, the resolution

of the entire video should sufficiently high. This ensures
that the area of the face is large enough.

Influence of software-related factors on image
quality
Depending on the chosen bit rate and compression

method, individual images in videos are subject to vary-
ing degrees of artifact formation. The greater the degree
of artifact formation, the more strongly the detection re-
sults will be influenced. Figure 1 shows the image quality
in relation to compression and bit rate.

(a) high compression and low bit rate

(b) low compression and high bit rate

Figure 1: Example of variations in quality for different
compression levels

While weak compression and relatively high bit rates
result in high image definition (Figure 1(b)), the contours
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are rather blurred for strong compression and low bit rate
(Figure 1(a)).

Influence of atypical facial features
Detection and classification algorithms are generally

trained through large annotated databases. Conse-
quently, the detection result is also dependent on con-
formity of the recognized face with the database. If the
recognized face has any unusual features, this can re-
sult in fluctuations of the results values. For example, if
someone wears glasses with reflective lenses, this can cre-
ate problems in eye recognition and therefore influence
the detection and values.

Quality check and dynamic adjustment
In applied settings, it is essential that the data volume

is kept as low as possible, especially when the video has
to be transmitted online. However, this can impact the
quality of video material and therefore also detection re-
sults. For this reason, it is recommended that the quality
of recorded material is already assessed as part of a qual-
ity check prior to recording and, if necessary, to adjust
video resolution and compression. This makes it possible
to respond to inadequate facial recognition through poor
lighting, for example. The software for emotion detection
used in this study incorporates a quality check by calcu-
lating a quality indicator. The indicator states how well
the face can be detected. Compression and resolution
can therefore be adapted if the indicator falls below a set
threshold. In principle, the quality check can be repeated
as often as required until the image quality reaches the
desired level.

2.2 Hardware-related factors
Camera
Webcams are generally used for automated emotion

recognition. The quality of these cameras influences the
image and therefore also the detection result. As many
webcams have relatively large wide-angle lenses, the dis-
tance between respondents and the camera is particularly
important as well as the recording angle. In addition, the
direction in which respondents are looking impacts the
detection result and if the angle is very wide, for exam-
ple, the eyes cannot be detected. The algorithm of the
GfK EMO Scan is able to correct horizontal deviations
in the line of sight by +/- 30 degree.
A higher quality autofocus can improve the video data.

Poor cable connections or dirty lenses can also have a
negative effect on the recording quality.

Lighting
Inadequate lighting has a similar effect on video qual-

ity. Figure 2 shows different examples of poor lighting
and its impact on image quality.
In addition, poor light conditions such as back-lighting

or cast shadows can cause contours to be blurred or par-
ticular facial features such as the eyes or the mouth to

(a) cast shadows (b) backlighting

(c) light from above

Figure 2: Influence of lighting on image quality

barely be recognizable, which again impacts the detec-
tion result. Given that lighting can vary during a record-
ing, image quality can also change and consequently re-
sult in noise.

3 Reduction of noise
3.1 Test scenario for measuring noise
A test was conducted to isolate noise. For the test, 24
still images showing various emotional expressions of 12
different individuals were extracted and each was devel-
oped into a 30 second video file. The resulting 24 video
files were analyzed with GfK EMO Scan and calibrated
separately. For each video file we used the averaged va-
lence of the video file itself for calibration and subtracted
this calibration from all measured valence values (15 val-
ues per second). Given that there are no changes of emo-
tion in still frames, this allows pure noise to be observed.
As this procedure used video material comprised of still
frames, variation in lighting and webcam quality can be
excluded as sources of noise. Atypical facial features were
also excluded in the selection of pictures as far as possi-
ble. Consequently, the only noise sources that remained
were compression (video codec), bit rate and key frame
setting. In this regard, the settings chosen were those
that are also applied in real study applications.
When examining noise individually for each analyzed

video, the individual average noise ranges between -33.6
and 14. The lowest value of standard deviation is 5.7
and the maximum deviation is 20. Overall, the maximum
negative deflection for individual frames was in the region
of -63.9 and the maximum positive deflection was 53.7.
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Noise Minimum Maximum
Mean -33.6 14
SD 5.7 20
max negative signal -63.9 -14.9
max positive signal 9.1 53.7

Table 1: Mean and dispersion of noise with 15 Hz data

3.2 Methods for reducing noise
A range of different mathematical methods are available
for smoothing data and thus reducing noise. This in-
cludes methods such as the Hodrick-Prescott filter (Ho-
drick and Prescott, 1997) and the Kalman filter (Kalman,
1960). But each of these has shortcomings: whereas the
Hodrick-Prescott filter is good for removing seasonal ef-
fects from trend data the Kalman filter requires that the
distribution of noise must be known. Data can also be
smoothed through approximation with spline curves or
simply through temporal aggregation. These two meth-
ods have fewer shortcomings, so will be explored in detail.
The idea behind the computation of spline curves is

to achieve a smoothed approximation of signal through
a piece-wise defined, continuous and differentiable func-
tion. This method involves segmenting the time se-
ries into intervals and approximating it piece-wise with
a polynomial of degree n. The continuous and differ-
entiable nth-degree function is derived from individual
polynomials, which are defined for each section, and used
to describe the entire time series. The function then is
derived from the parameterization of the single polyno-
mials. By fitting the polynomials, the data is smoothed
due to the interpolation between the different data points
(cf., e.g., de Boor, 1978).
Far easier to implement and simultaneously generating

similar results to approximation through spline curves is
temporal compression of the data, which means averag-
ing within particular time intervals. Table 2 and Figure
3 show examples of data with a temporal resolution of
10 Hz, 1 Hz, and spline approximated data.

Mean SD Minimum Maximum
10 Hz -1.3 2.15 -8.33 5.1
1 Hz -1.3 1.26 -3.1 1.29
Spline -1.31 1.3 -4.68 1.57

Table 2: Mean, SD and variance at 10 Hz, 1Hz, and
spline approximation

Table 2 shows some moments of the noise distribu-
tion when temporal aggregation and spline approxima-
tion have been applied. It shows that the standard devi-
ation of noise is reduced by about half. The range falls
from 13.43 to 4.39 with temporal aggregation and to 6.25
with spline approximation.
In order to analyze the impact of noise on the recorded

valence values for emotional reactions, still images of
one person with a variety of positive and negative facial
expressions were strung together to create a 30 second
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Figure 3: Reduction of noise following temporal com-
pression and B-splines

video. The still frame for each emotional state was dis-
played for 6 seconds. Two tapes were developed using
two different actors. Each recording was calibrated to
neutral facial expressions for that actor.
Figure 4 shows the noise for typical emotional reac-

tions. Significant deflections were certainly evident be-
tween the individual fixed images, but the valence fluc-
tuates around the average within each image. These va-
lence fluctuations are greater around the large deflections
at the phase shift. This is due to the interpolation of
frames between key frames. As the video is made by us-
ing still frames, there is no continuous transition between
different emotional states and thus, the interpolation by
the video codec produces these distorted values. How-
ever, the interpolation distortion would be much smaller
for real recordings. For example, the transition from a
neutral face into a smile would be more smooth. Simi-
larly, the measured average valence of the respective emo-
tional expression clearly exceeds noise, which is particu-
larly apparent for compression to 1 Hz.
Noise over time can therefore be significantly reduced

through temporal aggregation. If this method is applied
to the data of each respondent, a further reduction of
noise can be achieved by aggregating the data across re-
spondents. To this end, averages across individuals are
computed at each point in time. The following figures
show the impact of cross-sectional aggregation for differ-
ent frequencies.
In Figure 5(a), data was aggregated from 15 Hz to 10

Hz and an average was taken for all respondents. In ad-
dition, the confidence intervals (α = 0.1) were calculated
and a t-test (two-sided, two samples with heteroscedas-
ticity, α = 0.1) was applied to determine whether the
averages significantly deviate from zero. It shows that
only a few frames remain where average noise signifi-
cantly deviates from zero.
If the data aggregated for respondents is further com-

pressed to a frequency of 1 Hz (one value per second), the
deflections fall even further. Statistical tests show that
average values per second are no longer different from
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Figure 4: Noise for different emotional facial expressions

zero. Figure 5(b) depicts data with frequency 1 Hz data
aggregated across all respondents.

3.3 Relevance of noise in field studies
From consideration of the variance of valence in the con-
text of real application of the software, for example an
advertising test, it becomes apparent that noise can be
significantly reduced in real-life scenarios. A survey in
which the software was used to test different commercials
will be used for comparison purposes. The study was
conducted in a test studio. Respondents were recorded
on a webcam while they watched TV commercials. The
recordings were analyzed using GfK EMO Scan (cf. Gar-
bas et al., 2013).
Figure 6 shows the results for two different commer-

cials at a frequency of 1 Hz. According to our test sce-
narios, the individual standard deviations (at 1 Hz), and
therefore the individual noise levels, are between 2.6 and
10.5 and averages at around 4.6.
Considerable deflections can be seen for the automo-

tive commercial. The aggregated valence ranges from
approximately 3 to around 72 and is about 35 over time.
The standard deviation for aggregated data is around
20. It is apparent that the result clearly differs from
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Figure 5: Reduction of noise with temporal aggregation
of data to 10 Hz and 1 Hz

random fluctuations. Emotional reactions that go far
beyond the measure of noise are also evident at an in-
dividual level. The individual standard deviation range
is between 7.5 and around 110.5. The average standard
deviation across all individuals is 33.5. Of the overall
sample, the share of respondents with a standard devia-
tion of less than 10, which is only noise according to the
test, is only 2.2%. The bandwidth of calculated valence
ranges from around 70 as a minimum to more than 300
as a maximum. Compared with individual noise values
from the test, significant emotional reactions are evident
for almost all respondents in this respect.
A different picture emerges for the dish-washing liquid

commercial. Here, the aggregated valence only ranged
from around -4 to 4 and the average is approximately -1
with a standard deviation of around 2. Thus, there are no
significant deflections and respondents do not display any
emotional reactions on average when they view the com-
mercial. On an individual basis, the share of respondents
for whom the standard deviation is in the noise range is
considerably higher, at 17%. Additionally, even respon-
dents with a high standard deviation, i.e. with signals
outside the noise range, show less intense emotional re-
actions than respondents in the automotive commercial.
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(b) results for commercial dishwashing liquid (N=176)

Figure 6: Aggregated valence for commercials; fre-
quency: 1 Hz

Overall, following aggregation of the data, no significant
emotional reactions were detected. Figure 7 shows the
distribution of individual standard deviations for both
commercials.

4 Conclusion
An analysis of causes of noise and measurement distor-
tions in the automated recognition of emotions from fa-
cial expressions was presented. Noise was extracted for
a test scenario in which facial recognition software was
used to analyze videos comprising still frames. It was
possible to isolate noise because the videos did not in-
clude any changes in facial expression.
The analyses showed that data from automated emo-

tion detection could be biased due to noise. However,
several methods exist which can reduce and statistically
eliminate noise. Some of these methods were discussed in
more detail and were applied to the data of the test sce-
nario. In particular, data was smoothed through tempo-
ral aggregation, spline approximation and cross-sectional
aggregation.
It was shown that noise could be significantly reduced
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(a) individual standard deviation; automotive manufacturer
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Figure 7: Distribution of standard deviation for both
commercials; frequency: 1 Hz

by applying these methods to the point that deviations
did not statistically exceed zero valence.
Temporal compression to a frequency of 1 Hz is par-

ticularly effective and easy to apply. Only the means
aggregated over each second have to be computed for
each respondent.
If the data is then further aggregated across a suffi-

ciently high number of respondents, noise statistically
disappears, both at 10 Hz and 1 Hz.
Summing up, automated recognition of emotions from

facial expressions can generate valuable insights and de-
liver reliable results. However, it is essential that some
methodological particularities are taken into account.
Noise can occur when examining individual cases, but
by considering the characteristics of the data and apply-
ing a few simple methods, it can be reduced to statistical
insignificance.
To this end, it is recommended to aggregate the data

to 1 Hz or at least to 10 Hz, first. Secondly, this tempo-
rally aggregated data should be additionally aggregated
over a sufficiently high number of observations. Although
from a statistical point of view a larger sample size is nec-
essary to obtain statistically robust and asymptotically
normal distributed results (internal simulations suggest
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at least N=70) cross-sectional aggregation of only 20 re-
spondents should be appropriate to eliminate the pure
technical noise from the data.
If these recommendations are considered, only a low

level of noise remains. For this reason, it is advisable not
to interpret valence values of between -10 and 10 for 10
Hz data and between -5 and 5 for 1 Hz data as emotional
reactions but to regard them as neutral. In addition, it
is important that the correct settings for elements such
as video compression and the video codec are selected.
However, it should not be ignored that there is a trade-
off between video quality and the volume of data that
has to be transferred.
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