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Using logit on big data – from iterative methods to
analytical solutions

Birgit Stoltenberg∗†

Abstract— Numerical optimization for logit models is often time consuming, at least
for big data. In this paper I combine several analytical approaches to solve logit models
in a practical context including (sign) restrictions and constraints. The application to a
household panel model compares the two approaches on several dimensions.
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1 Introduction

Logit models (also known as logistic regression models)
are widely used in market research. For example, they
are applied to define the functional relationship between
stated purchase intentions or preferences and the actual
probability of purchase. This is necessary in conjoint and
modeling projects. One property of logit is that the re-
sulting logit probabilities range between zero and one, as
required for a probability. Depending on the number of
choice options to model, binomial logit or multinomial
logit is used.
For the binomial logit, consider respondent n (n =
1, ..., N) who chooses from i alternatives (i ∈ {0, 1}) in
period or choice situation t (t = 1, ..., T ). The probability
p of n for choice i in period t will be:

pnit =
1

1 + e−Vnit
Vnit = α+ βxnit (1)

Multinomial logit models the choice between several
alternatives i (i = 1, ..., J) and is calculated like this:

pnit =
eVnit

J∑
j=1

eVnjt

Vnit = α+ βxnit (2)

Traditionally, estimation of a logit involves maximizing
the likelihood function. This is typically done by numer-
ical optimization (see Train, 2009, p.37). F.ex., within
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GfK for a household panel model with several multino-
mial logits and one binomial logit, numerical procedures
are used to find the optimal coefficients today. Further-
more some coefficients are restricted and for the binomial
logit there are even constraints, i.e. additional conditions
on the dependent variable (DV).
But numerical algorithms – like Nelder-Mead, Golden
Section Search, Newton-Raphson or Iteratively Weighted
Least Squares (IWLS) – are iterative procedures with the
following drawbacks: They are time consuming, depend
on initial coefficients and, unfortunately, there is no guar-
antee for finding the global maximum.
On the other hand, they also have advantages: It is quite
simple to add (sign) restrictions for the estimated coef-
ficients. And it is even possible to add constraints. To
achieve this, we use ordinary least squares (OLS) instead
of maximum likelihood as objective function and simply
add the constraints to the OLS.
To overcome the numerical optimization Lipovetsky de-
velopped and described an analytical closed-form solu-
tion for binomial logits (Lipovetsky, 2014). In this paper
I test whether this new method is also applicable to real
data and whether restrictions and constraints can be in-
cluded in the new method.
The rest of the working paper is organized as follows:
In section 2 Lipovetsky’s method ‘quasi-analytical solu-
tion’ (QAS) to overcome the numerical optimization is
described. Section 3 is about whether (sign) restrictions
are also possible in a linear regression environment. Sec-
tion 4 describes how to handle constraints in combination
with QAS. In section 5 these methods are applied to an
existing household panel model, including a validation.
There is a short summary in section 6.
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2 The quasi-analytical solution

Lipovetsky has developped an analytical closed-form so-
lution for binomial logits by categorical predictors. In his
paper he also showed ways to generalize the method to
continuous predictors – as we find them in our database.
First, his approach is summarized briefly, followed by a
description of the method recommended for the real data.

2.1 Method description

Lipovetsky starts with the analytical solution for a bi-
nomial logit with one dichotomous predictor xit and the
binary outcome yit. Without loss of generality only one
respondent is modeled, so compared to Equation (1) we
leave out the n:

pit =
1

1 + e−Vit
Vit = α+ βxit. (3)

Equation (3) can easily be transformed into its linear-
link form:

ln
pit

1− pit
= Vit = α+ βxit. (4)

The likelihood function of Equation (3) is normally
used to estimate coefficients α and β:

L =

T∏
t=1

∏
i∈0,1

pyit

it (1− pit)1−yit (5)

Predictor X takes a value x0 or x1 in each t-th period,
and the results of Equation (3) will also be of two values:
p0 and p1. Results will be summarized in a (2× 2) con-
tingency table of counts of all combinations with a total
of T counts (Table 1).

Table 1: Contingency 2× 2 table of counts for predictor
X and outcome Y with a total of T cases

Binary event

y=0 y=1 Row-totals

values
x0 T00 T01 T0.

x1 T10 T11 T1.

Column-totals T.0 T.1 T

Lipovetsky’s approach is based on the observation that
event frequencies – calculated on contingency tables of
counts from the data – coincide with the estimated prob-
abilities. His idea is to first calculate the probabilities
and their log odds, and then calculate the coefficients
analytically via a linear-link regression model.
To ‘prove’ this idea, he uses the counts of the contingency
table in the binomial likelihood function (5), so he gets:

L = pT01
0 (1− p0)T00pT11

1 (1− p1)T10 (6)

with p0 and p1 being the probabilities in the points x0
and x1. To calculate the estimates, we have to partially

derive Equation (6) and put the equations to zero. This
leads to solutions

p̂0 =
T01

T00 + T01
, p̂1 =

T11
T10 + T11

. (7)

The estimated values of p0 and p1 correspond to the
empirical definition of probability when the relative fre-
quency found by the counts can serve as the sampling
probability estimator for a large sample size T .
To summarize the (2×2) case: The linear-link regression
model leads to coefficients and therefore also to standard
errors, t-statistics and R2. Formulas for these can be
found in Lipovetsky’s paper (see Lipovetsky, 2014, pp.40-
41). The (2×2) likelihood solution is already known (see
Greene, 2012, p.797), but the detailed derivation of for-
mulas makes it easy to expand the approach from bino-
mial logit and one dichotomous predictor to:

• one categorical predictor (with K levels)
resulting in a (K × 2) contingency table

• two categorical predictors (with K1 and K2 levels)
resulting in a ((K1 ∗K2)× 2) contingency table

• several categorical predictors (with K1, ...,Kn lev-
els) with M := (K1 ∗ ... ∗Kn)
resulting in an (M × 2) contingency table

• multinomial logit can be transformed into binomial
logit by transforming yj into yj ∈ {0, 1} with the
additional levels being stacked,
e.g. a three-level yj with levels a, b and c will be
transformed to ya, yb and yc each with two levels
∈ {0, 1}, stacked together

• continuous predictors have to be discretized into
groups of discrete ordinal levels, the number of level
has to be choosen depending on the dataset

2.2 Application on real data

What steps have to be executed when we apply the
new method to real data? The first step is to find a
reasonable contingency table of size ((M � N)× 2). Of
course M has to be much smaller than N , otherwise the
contingency table would have about the same size of
the original data, but with summarized information and
with – obviously – a lot of missings. Cells with 1 or 0
have to be transformed to (1 − ε) or (0 + ε), using e.g.
ε = 10−5.
Note, that Lipovetsky himself (see Lipovetsky, 2014,
p.44) tested a transformation of an (N ×B) X database
into an (M × B) X̃ database which I used for large
categories like chocolate bars or softdrinks.
In a second step, the ‘estimated’ probabilities are
calculated out of the contingency table and put in
the linear-link function, as results at the left side of
Equation (4). The third step is solving the linear-link
regression by the standard (X ′X)−1X ′y formula (see
Fahrmeir et al., 1996, p.98).
Why do we call the new method ‘quasi’-analytical
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solution? The ‘quasi’ comes into the solution in the
first step, while defining the contingency table and
by choosing an adequate ε. Steps two (calculation of
probabilities) and three (solving a linear regression) are
totally analytical.

Now I test whether the QAS can handle some typical
characteristics of household panel data. There are two
special cases where standard logit models show some dif-
ficulties: First, it could be that a household has only one
choice option in its choice set. With the traditional ob-
jective function, these households will always get a prob-
ability of one (p = 1), independent of the estimated coef-
ficient. Therefore, these households are removed because
they bring no additional information into the objective
function. But in small categorys where households do
not buy that often or stick to one favourite choice op-
tion, these households could be a significant part of all
households. In the contingency table these households
bring in some new information and are therefore better
represented by the QAS approach.
Second, in household panel modeling, no experimental
design is created upfront as it is in conjoints, but the
choice sets consist of real available choice options. There-
fore it is possible that the choice design consists of sev-
eral separated parts with no connection. In this case we
had to fix one coefficient for each isolated island in or-
der to optimize the remaining coefficients with numerical
optimization (see Train, 2009, pp. 20-21). In the QAS
approach these islands are already connected in the con-
tingency table.
Up to this point, I demonstrated how to overcome some
drawbacks of numerical optimization: the calculation of
the results is no longer time consuming, we do not need
initial coefficients and we will find the global maximum.
But are (sign) restrictions and constraints still possible?

3 (Sign) restrictions

Why do we need (sign) restrictions? As we would like
to do predictive analytics with our logit, we need face
validity. E.g., for ‘what if’ scenarios in marketing mix
modelling it is necessary that price gets a negative sign.
Therefore we want to restrict the sign of some coeffi-
cients. Additionally, we have some utility values and
want to guarantee that high loyalty utilities are greater
than low loyalty utilities.
Through calculating probabilities from the contingency
table and using them as input in the linear-link func-
tion we are in the environment of a linear regression and
(in case of no restrictions) will just calculate the coef-
ficients by the known (X ′X)−1X ′y formula. In case of
restrictions we have to apply a trick. Again Lipovet-
sky, together with Conklin (2015), has published a paper
where they compared different measures to analytically
calculate preditors’ relative importance as it is known
from the Shapley value regression (SVR). They searched
for a measure to overcome the computational burden of
SVR. If both is needed – predictors’ importance and re-

gression coefficients – the measure of Gibson (1962) and
R. Johnson (1966) (GJ) beats the other measures. So
for the question at hand GJ is the one to take. The idea
behind the GJ measure is the decomposition of R2, using
an orthonormal matrix approximation to the data. Fur-
thermore, Lipovetsky and Conklin (2015) have improved
the orthonormal approximation of GJ.β to GJ.β∗ to be-
come independent of singular values close to zero.
Lipovetsky and Conklin searched for a measure to cal-
culate predictors’ importance, they found one and addi-
tionally found that ”the regression coefficients can also
be adjusted to reach the best data fit and to be mean-
ingful and interpretable” (see Lipovetsky and Conklin,
2015, p.1). Our solution has the additional benefit that
the coefficients are also interpretable as predictors’ im-
portances and therefore are robust to multicollinearity.
For calculating GJ.β∗ coefficients, the following 5 steps
have to be executed:

I. calculate OLS.β:
OLS.β = (X ′X)−1X ′y

II. calculate GJ.β which is the sqare root calculated
by singular value decomposition. They have the
meaning of pair correlations and simultaneously co-
efficients of regression:
GJ.β = (X ′X)1/2OLS.β

III. (optional) change signs in GJ.β, e.g.
GJ.sign = (GJ.β1, ..., abs(GJ.βj), ...,GJ.βn)

IV. improvement by Lipovetsky and Conklin to get in-
dependent of singular values close to zero by q:

q =
X ′yGJ.sign

GJ.sign′X ′XGJ.sign

V. result GJ.β∗

GJ.β∗ = q ∗GJ.sign

As we can see from step III, the resulting coefficients
are always positive. So we have to transform the in-
put matrix to get any restrictions (coefficient ≷ value a,
coefficienti ≷ coefficientj).
In this section I demonstrated that QAS is able to handle
(sign) restrictions by performing steps I. to V. instead of
the standard regression formula. But how does the pro-
cedure change in case of constraints?

4 Constraints on the DV

A logit OLS objective function including constraints
might look like this:

minimize

T∑
t=1

N∑
n=1

(pnt − ynt)2

subject to

N∑
n=1

pnt
=

N∑
n=1

ynt
t = (1, ..., T ) (8)

Compared to the restricted coefficients from the sec-
tion before, constraints could be handled as restrictions
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on summary statistics of predicted values. Think of the
following example: In modeling whether a household
buys in one week, the weekly sum of purchase acts should
be achieved as well. In logit models with numerical op-
timization the original OLS is augmented to:

OLS =

T∑
t=1

N∑
n=1

(pnt−ynt)2 +

T∑
t=1

(
N∑

n=1

(pnt − ynt)

)2

(9)

In order to include this additional information into the
QAS approach, we have to stack the constraint informa-
tion with the original dataset and calculate the coeffi-
cients on the extended dataset. But how can we calcu-
late the additional information? This is done mathemat-
ically.
We have to transform Equation (9) into a (linear-link)

LS. Using Equation (4) and ynt := ln
pnt

1− pnt
we get:

(linear-link) LS =

T∑
t=1

N∑
n=1

(ynt − α− βxnt)2+ (10)

+

T∑
t=1

(
N∑

n=1

(ynt − α− βxnt)

)2

(11)

The question now is how to transform Equation (11)
to stack it with the data. Therefore the sum over all n
has to be placed inside the brackets:

T∑
t=1


N∑

n=1
ynt

N
− α− β

N∑
n=1

xnt

N


2

(12)

Now we see what we have to stack: From Equation
(10) we see that we have N ∗ T lines with ynt and xnt
within the dataset. From Equation (12) we have to add

T lines with

N∑
n=1

ynt

N
and

N∑
n=1

xnt

N
. This is the basis for

calculating the QAS. In case of having constraints and
(sign) restrictions we have to calculate GJ.β∗ on the
augmented dataset.
Why do we have these constraints on our logit OLS? In
linear regression the following constraint: the total sum
of ynt equals the total sum of α+βxnt because the mean
of the dependent variable equals the mean of the values
estimated by the model. But for non-linear logit this is
not the case and therefore a more detailed constraint
like Equation (11) is also not automatically solved.

In our household panel model we want to predict
whether a household buys in time period t. In some cat-
egories, like detergents or cleaners, most household buy
the category less frequently. If this is the case, we addi-
tionally have to modify the resulting coefficients like King
and Zeng (see King and Zeng, 2001, p.144) suggested.
They described a slightly modified Bayesian adjustment
for the intercept:

α∗ = α− ln

[(
1− τ
τ

)(
ȳ

1− ȳ

)]
(13)

In more frequently bought categories like chocolate
bars or softdrinks this Bayesian adjustment leads to no
further improvement, but it has no disadvantage either.
The adjustment α∗ in Formula (13) can be combined
with data augmentation and GJ.β∗ calculation.
We now have a complete theoretical solution for solving
logit models analytically including (sign) restrictions and
constraints. In the next section I apply this solution to
an existing household panel model.

5 Application on a household
panel model

The aim of the household panel model – named GfK-
BrandSimulator R© – is to predict the next year’s pur-
chase acts and volumes of a category in order to simu-
late different pricing and promotion strategies (Wildner
and Scherübl, 2006). This is achieved by a mathematical
model which consists of several sub models: two multino-
mial logits, one binomial logit and one truncated poisson
model. The multinomial logits have no constraints, but
sign restrictions and other restrictions. With these sub
models the households are choosing brands and retail-
ers for their purchases. They are labeled ‘WHERE’ for
the choice of a retailer and ‘WHAT’ for the choice of
the brand. The binomial logit works with sign restric-
tions and constraints. We use it for modeling whether
the household buys in one week or not. It is labeled
‘WHEN’. A combination of these three models is used to
predict purchase acts.
The truncated poisson model, for which QAS is not appli-
cable, is used ontop of purchase acts to predict purchase
volume. Because QAS is not applicable to truncated
poisson sub model, I concentrate on estimating purchase
acts sub models and on predicting purchase acts for the
comparison of the different optimizations.
So there are three models for testing the QAS. And ad-
ditional to the two multinomial logits a combination of
both into one multinomial logit can be tested. Up to now
such a combined sub model was impossible to calculate
due to the number of coefficients to be estimated. But
in an analytical process, the number of coefficients does
not matter that much. The new model combines the re-
tailer and brand choice and will be labeled sub model
‘WHERE & WHAT’ (‘W&W’).
X-variables for the ‘WHERE’ and ‘WHAT’ models are
mainly loyalty (towards retailers and brands respec-
tively) and marketing mix information (on prices, promo-
tions and distribution). An advantage of the combined
model ‘W&W’ is, that it is able to include also loyalty
(towards retailers and brands) and marketing mix. But
as it is only one multinomial logit (compared to the prod-
uct of two multinomial logits in case of ‘WHERE’ and
‘WHAT’) the marketing mix goes into the model only
once. This is an enormous advantage.
X-variables for the ‘WHEN’ model are seasonal, inven-
tory and consumption variables as well as marketing mix
information (on prices, promotions and distribution) in-
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cluding lagged coefficients for marketing mix.
The new methods are applied to three datasets from the
German GfK household panel with the characteristics
shown in Table 2.

Table 2: Characteristics of three datasets from the Ger-
man GfK household panel

Fabric Chocolate Soft-
number of Softener Bars drinks

purchase acts 17,987 113,869 188,372

households 3,688 8,492 10,782

weeks 53 53 53

retailers 12 29 24

brands 11 31 61

All three datasets consist of one year of data (53 weeks)
for the model estimation. To have data also for a vali-
dation, I selected households which have bought the cat-
egory at least twice in two years. ‘Fabric softener’ is
a rather small dataset with 11 brands and about 3,700
households buying the category almost 18,000 times.
With a larger number of brands and a more than doubled
number of households the categories ‘chocolate bars’ and
‘softdrinks’ cover over 100,000 purchase acts. In Table 3
and Table 4 the dimensions of the X matrices are listed.

Table 3: Dimensionality of the X matrices: number of
rows

number Fabric Chocolate Soft-
of rows Softener Bars drinks

WHERE 47,779 373,704 863,285

WHAT 47,931 419,872 602,588

W&W 124,409 1,876,344 2,340,625

WHEN 195,464 450,076 571,446

In Table 3 the number of rows for the combined model
really explodes. Looking at the number of rows for the
‘W&W’ model with over 2 million rows we come in the
range of big data.

Table 4: Dimensionality of the X matrices: number of
columns

number of Fabric Chocolate Soft-
columns Softener Bars drinks

WHERE 52 120 307

WHAT 57 157 100

W&W 107 274 404

WHEN 13 13 11

The number of columns correspond to the number of
estimated coefficients. In Table 4 the number of coeffi-
cients for ‘W&W’ is almost the sum of the coefficients
for ‘WHERE’ and ‘WHAT’. The number of coefficients
for the multinomial logits are so large due to the number

of loyalty coefficients.
The model results are compared with the following mea-
sures:

• R2
Efron = 1−

∑
(yn − ŷn)2∑
(yn − ȳ)2

(Efron, 1978)

• mean absolute error: MAE =
1

N

N∑
n=1
|yn − ŷn|

(see Fair, 1984, p.261)

• average probability for hits:

av.hit.prob =

∑
yn ∗ ŷn∑
yn

(see Rossi and Allenby, 1993, p.180)

• estimation time

The measures focus on different aspects. In R2

differences between observed and predicted probability
are squared. MAE works directly with the differences
and av.hit.prob bases upon predicted probabilites for
the alternatives chosen. All measures have in common
the range [0; 1]. So they are easily interpretable and
comparable.
R2 and MAE will be calculated on the household level
database (called: individual R2/ MAE) as well as on a
more aggregated database – summed over households
– depending on the sub model (called: aggregated R2/
MAE). The dimensions of the database are displayed
in Tables 5 and 6. The measure av.hit.prob focuses
on chosen alternatives. With aggregated purchase
acts (sum or mean) this feature would be lost. So
we will judge the quality of the results based on five
measures (individual and aggregated R2, individual
and aggregated MAE, av.hit.prob). A sixth measure
estimation time will complement the evaluation.

Now we turn to model fit and validation. Let us first
look at the model fit. In Table 5 the columns called
numerical optimization (num.) refer to the current GfK
household panel model GfK-BrandSimulator R©. Because
there is no equivalent numerical model for the combined
QAS model (‘W&W’), we combine – for comparison –
the results of the single numerical sub models (product
for R2, MAE and av.hit.prob, sum for time).
Table 5 summarizes the results on model fit and shows
several patterns:

• In all cases (all models, all datasets) the R2 is higher
for the numerical optimization. This is true for
individual and aggregated R2. The difference is
quite obvious. We find the biggest difference for the
‘WHEN’ sub model.

• Individual MAE is very similar for both methods.
Only for the ‘WHEN’ model QAS is always bet-
ter then numerical optimization. But again on the
aggregated level, the numerical model always beats
QAS.
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Table 5: Model fit for numerical optimization (num.) vs. QAS
datasets

Fabric Chocolate Soft-
dim. of Softener Bars drinks

models criteria database� num. QAS num. QAS num. QAS

WHERE R2 h,w,r 0.325 0.294 0.242 0.236 0.311 0.305
w,r 0.976 0.967 0.991 0.988 0.992 0.992

MAE h,w,r 0.316 0.304 0.253 0.250 0.270 0.276
w,r 0.048 0.055 0.021 0.023 0.018 0.018

av.hit.prob h,w,r 0.580 0.596 0.410 0.418 0.502 0.492

estimation timeO – 0.400 0.008 7.100 0.235 7.483 0.267

WHAT R2 h,w,r,b 0.434 0.321 0.211 0.167 0.348 0.223
w,r,b 0.915 0.846 0.950 0.829 0.966 0.809

MAE h,w,r,b 0.262 0.263 0.264 0.262 0.223 0.245
w,r,b 0.109 0.140 0.060 0.087 0.066 0.111

av.hit.prob h,w,r,b 0.656 0.656 0.405 0.410 0.493 0.441

estimation timeO – 1.417 0.007 26.100 0.406 888.767 2.174

W&W R2 h,w,r,b 0.247 0.194 0.056 0.035 0.121 0.105
w,r,b 0.867 0.802 0.866 0.842 0.897 0.781

MAE h,w,r,b 0.181 0.178 0.093 0.093 0.107 0.110
w,r,b 0.057 0.066 0.024 0.026 0.035 0.042

av.hit.prob h,w,r,b 0.379 0.388 0.148 0.151 0.227 0.212

estimation timeO – 1.817 0.053 33.200 1.315 896.250 2.811

WHEN R2 h,w 0.064 0.021 0.130 0.102 0.256 0.233
w 0.549 0.000 0.817 0.164 0.353 0.107

MAE h,w 0.150 0.140 0.273 0.254 0.278 0.250
w 0.008 0.017 0.011 0.026 0.013 0.016

av.hit.prob h,w 0.862 0.888 0.783 0.833 0.868 0.955

estimation timeO – 10.950 0.009 53.750 0.022 32.117 0.022
� h: household; w: week; r: retailer; b: brand
O estimation time measured in minutes

• On the other hand, in almost all cases, besides
Softdrinks ‘WHERE’, ‘WHAT’ and ‘W&W’, the
av.hit.prob favors QAS.

• And last but not least the estimation time is always
lower for QAS. And the larger the dataset, the more
substantial is the improvement in calculation time.

Summing up the results, we observe that for the indi-
vidual measures we get about the same quality for both
methods. Although R2 is less for the QAS, MAE and
av.hit.prob show that the quality of the new method is
not worse than the numerical optimization – and the co-
efficients are estimated in much less time. But we have
to keep in mind that on the aggregated level QAS does
not reach the same quality, especially for the ‘WHEN’
sub model. But this was only model fit. We also have to
do a validation.
For the validation model, coefficients are estimated with
the input (household panel data) of year T , the model
results are predicted for year T + 1 (using model co-
efficients of year T and marketing mix of year T + 1)
and the model results are compared with real household

panel data for year T + 1. To predict the model re-
sults – individual purchase acts – the three household
panel sub models ‘WHEN’, ‘WHERE’ and ‘WHAT’ are
multiplied (W,W,W). In the case of the combined model
‘W&W’, sub models ‘WHEN’ and ‘W&W’ have to be
multiplied (W&W,W). For the validitation calculation,
the sub models are only applied, but not estimated.
For this reason, the comparison of time for the differ-
ent methods is not meaningful. As we have to calcu-
late all combinations of households, weeks, retailers and
brands, the matrices are much larger than for model es-
timation. Therefore the measures are in general lower
than for model fit. Table 6 reports the results of the
validation.

The individual R2s are too small to interprete. Ag-
gregated R2s favor clearly the numerical optimization.
On the other hand, individual MAE is always better for
QAS and the aggregated measure is quite similar for
both methods. Average probability for hits differs: It
is best for fabric softener numerical optimization, best
for chocolate bars QASW,W,W and best for softdrinks
QASW&W,W . So each model and each dataset leads to
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Table 6: Validation results for numerical optimization (num. opt.) vs. QAS
models

dim. of num. QAS QAS
datasets criteria databasea opt. (W,W,W) (W&W,W)

Fabric R2 h,w,r,b 0.013 0.000 0.000
Softener w,r,b 0.646 0.390 0.403

MAE h,w,r,b 0.023 0.016 0.015
w,r,b 0.008 0.007 0.007

av.hit.prob h,w,r,b 0.044 0.028 0.025

Chocolate R2 h,w,r,b 0.003 0.000 0.000
Bars w,r,b 0.831 0.474 0.000

MAE h,w,r,b 0.022 0.020 0.017
w,r,b 0.006 0.007 0.008

av.hit.prob h,w,r,b 0.053 0.122 0.096

Soft- R2 h,w,r,b 0.048 0.000 0.000
drinks w,r,b 0.919 0.788 0.588

MAE h,w,r,b 0.044 0.042 0.038
w,r,b 0.012 0.015 0.015

av.hit.prob h,w,r,b 0.140 0.199 0.207
a h: household; w: week; r: retailer; b: brand

a different solution. One may wonder why the proba-
bility is so low, but for each household, week, retailer
and brand, there are a lot of options all together. The
probability to beat (of the zero-model) is 0.023 for fabric
softener, 0.017 for chocolate bars and 0.044 for softdrinks.
Regarding also the amount of difference between the sin-
gle solutions, av.hit.prob favors QASW,W,W .
Again – as for model fit – the summary of all measures
shows comparable quality on the individual level. But on
the aggregated level, the level where decisions are made
in practice, QAS could not reach the level of numerical
optimization.
Why do individual comparable results differ so much on
an aggregated level? One reason could be: The R2s, the
strongest of the selected measures as it judges all differ-
ences in square, always led to numerical optimization. So
far there is no contradiction. Especially av.hit.prob of-
ten favored QAS. But this measure only regards chosen
alternatives, therefore the non-chosen ones could make
the difference in aggregation.

6 Summary

The starting point was that numerical optimization
for logit models is time consuming, dependent on
initial values and unfortunately there is no guarantee
for finding the global maximum. With Lipovetsky’s
quasi-analytical method we managed to save estimation
time substantially. But as in numerical optimization
(sign) restrictions and constraints are easy to include,
this is not the standard in linear regression. (Sign)
restrictions are solved through calculation of Gibson’s
and Johnson’s measure, which is additionally optimized
by Lipovetsky and Conklin (2015). To overcome the

constraints we stack additional information with the
original dataset and calculate GJ.β∗ coefficients on the
augmented data. To model household panel data for
small categories, we additionally use a slightly modified
Bayesian adjustment for the intercept suggested by King
and Zeng (2001).
Finally we applied the combination of these methods to
three household panel datasets: One small detergents
sub category (fabric softener) and two larger categories
from food (chocolate bars) and drinks (softdrinks).
We compared the model fit on several dimensions and
found out that the R2 was always better for numerical
optimization. The individual MAE and the average
probability for hits was mostly better for the new
methods. In summary the quality of the coefficients and
the individual results seem to be equal for the numerical
and for the quasi-analytical solution. The aggregated
results favored the numerical method. But of course the
QAS is much faster to calculate. This is a big advantage,
especially for the large categories.
Additionally, we tested a new sub model for the existing
household panel model. Instead of two distinct models
for retailer choice and brand choice we tried to model
both choices in one model. From a model fit perspective
this worked quite well, although the number of coeffi-
cients to estimate was almost the sum of the coefficients
of the two single sub models.
We also compared the validation results for the numer-
ical and the QAS coefficients. Although again R2 was
always better for numerical optimization, individual
MAE and average probability for hits favor QAS. In
practice, decisions are made on an aggregated level, this
led to numerical optimization as winner for all three
datasets.
The strengths of the QAS approach are first of all
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speed. This has enormous effect on research time and
of course also for clients projects. The second strength
is the capability with multicollinearity because of the
GJ.β∗ coefficients. And third, for some patterns in real
data the aggregation to a contingency table really has
advantages. The weakness of QAS is so far the quality
of results in a complex model as GfK-BrandSimulator R©.
This leads to some research questions: How can we
further improve which contingency table to select as this
is the only non-analytical step in the whole procedure?
Are there already patterns visible when we compare
resulting coefficients directly? How can we visualize
aggregated results to identify quality gaps. Also, the
decision on whether to stick to the two seperate sub
models for retailer and brand or to use the combined sub
model in the future cannot be answered based on the
existing results. A further research direction: Is there
an option to apply QAS on truncated poisson models?
Then the whole household panel model could be solved
quasi-analytically.

Further applications of QAS are possible in a wide field
of market research methods, especially preference mod-
elling, forecasting and classification tasks.
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