

Prof. Dr.-Ing. Markus Lienkamp

Lehrstuhl für Fahrzeugtechnik | TU München

Status der Elektromobilität 2018

Der Kunde wird es entscheiden

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

Infrastruktur

Preis

Nachhaltigkeit

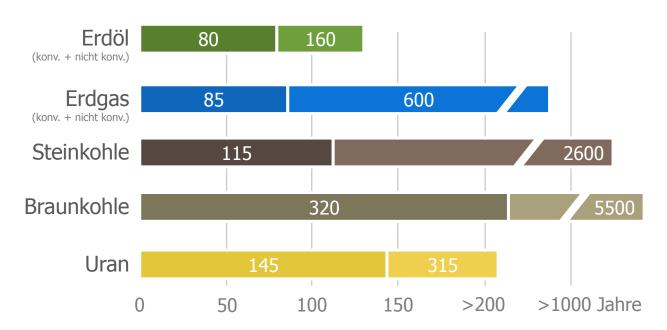
Die Ingenieurssicht

Die Kundensicht

Einfluss des autonomen Fahrens und der Mobilität

Konsequenzen für Hersteller (OEM), Stufe I

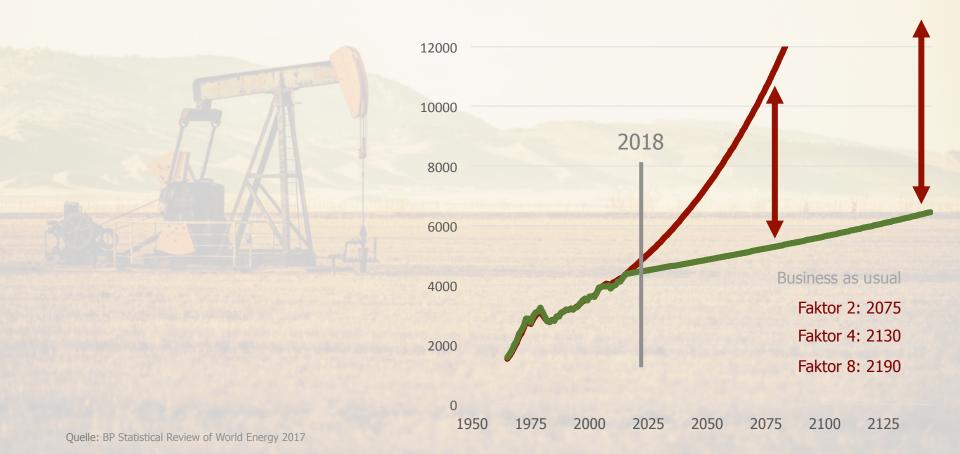
Relevante Megatrends



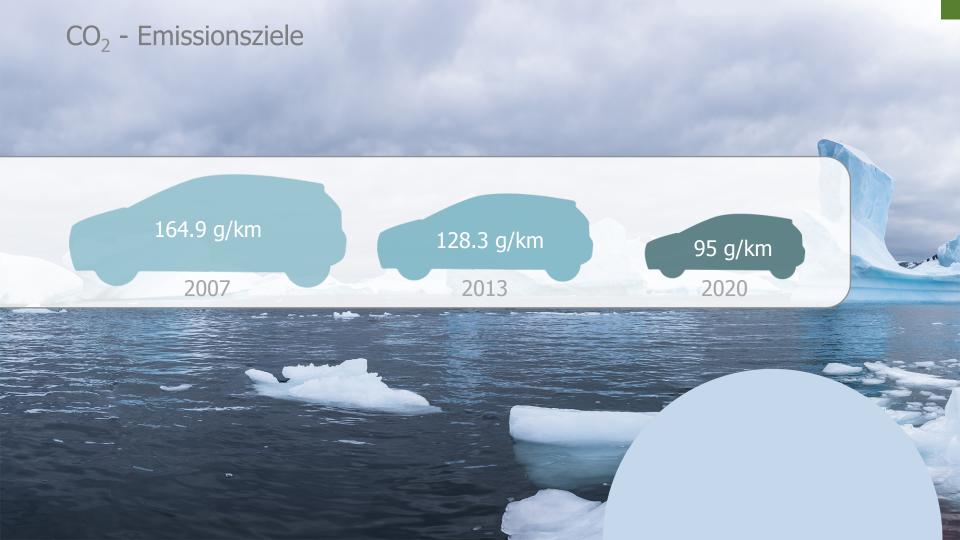
Verfügbarkeit nicht erneuerbarer Energien

Reserven Ressourcen

Wirtschaftlich abbaubare Menge des Rohstoffs Gesamtmenge des Rohstoffs (geschätzt, gemessen)



Quelle: BGR, OECD-NEA, VGB 2017


Weltweite Erdölförderung 1950-2200

Bei 1,5% Bedarfssteigerung und 0,3% Förderungssteigerung nach Prognose der Ölfirmen in Millionen Tonnen

Relevante Megatrends

Mögliche Energieträger

CO₂-Ausstoß und Kraftstoffkosten

Benzin	Diesel	Erdgas CNG	Erdgas LNG	LPG	Strom	Wasserstoff	Biokraftstoff	eFuels
					CO ₂ Einsparpotential			
0%	0%	0%	0%	0%	100%	100%	40%	100%
					Lokal emissionsfrei			
nein	nein	quasi	quasi	quasi	ja	ja	nein	quasi
					Energieeinsatz			
gering	gering	gering	gering	gering	gering	5x >Strom	gering	5x >Strom
					Kraftstoffkosten*			
3,00 €	2,50 €	2,40 €	2,40 €	3,00 €	3,50 €	12,50 €	4,20 €	12,50 €
					Infrastruktur			
vorhanden	vorhanden	vorhanden Ausbau nötig	4.5 Mrd Tankstellen	vorhanden Ausbau nötig	vorhanden Ausbau nötig	5 Mrd Tankstellen	vorhanden	umbaubar
					Mehrkosten Fahrzeug			
gleich	gleich	2.000 €	3.000 €	1.000 €	5.000 €	>10.000 €	gleich	gleich
					Gesamtbewertung			
CO ₂ Emissionen	CO ₂ Emissionen	CO ₂	CO ₂ Kosten	CO ₂	Initialkosten TCO ok	Kosten Energie	Land	Kosten Energie

^{*} pro 100 km, ohne Steuern

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

Evolution der Energiedichte von Li-Ion Zellen

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

Infrastruktur

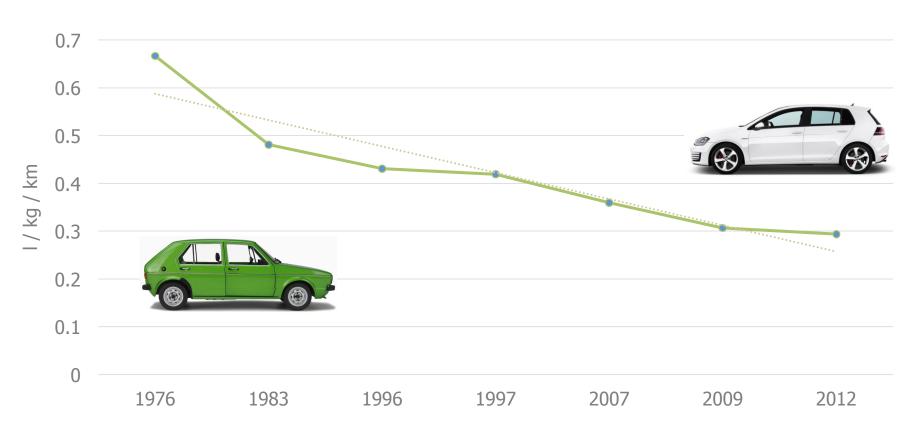
Laden

Bidirektional

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)


Reichweite

Infrastruktur

Preis

Entwicklungstempo Golf I bis Golf VII

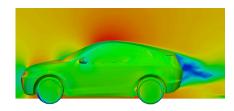
Neue Technologien zur Effizienzsteigerung

TDI, TSI, DSG, Hybrid, Alu, EU6d, Aerodynamik

TDI
Turbocharged Direct Injection

TSITwincharged Stratified Injection

DSGDirektschaltgetriebe



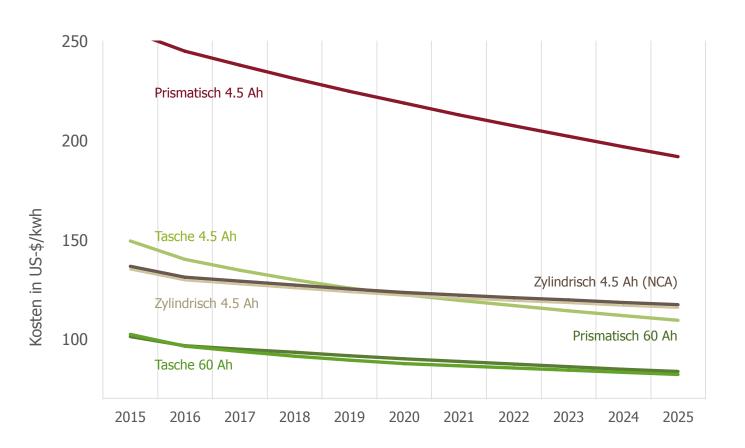
HybridVerbrennungsmotor + Elektromotor

Leichtbauweise

Verwendung von Aluminium

Efficient Dynamics

Optimierung der Aerodymanik



EU6d Abgasnorm zur Schadstoffreduktion

Batteriekosten

Kostenentwicklung 2015-2025

Visio.M

Leichtfahrzeugkonzept für urbane Elektromobilität

Visio.M

Leichtfahrzeugkonzept für urbane Elektromobilität

Verbesserung der Wirtschaftlichkeit

► Erhöhte Laufleistung im Kurzstreckenbetrieb

► Staatliche Förderung

Senkung Batteriekosten
[Massenfertigung | Innovation]

[Benutzung von Busspuren] [Zonen ohne Verbrennungsmotor]

Purpose Design

Purpose Design

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

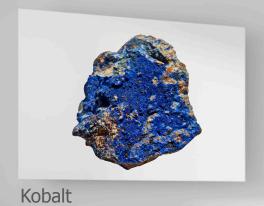
Reichweite

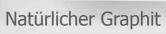
Infrastruktur

Preis


Nachhaltigkeit

CO₂ Emissionen in der Produktion


Vergleichende Umweltprofile (normiert)



Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

Infrastruktur

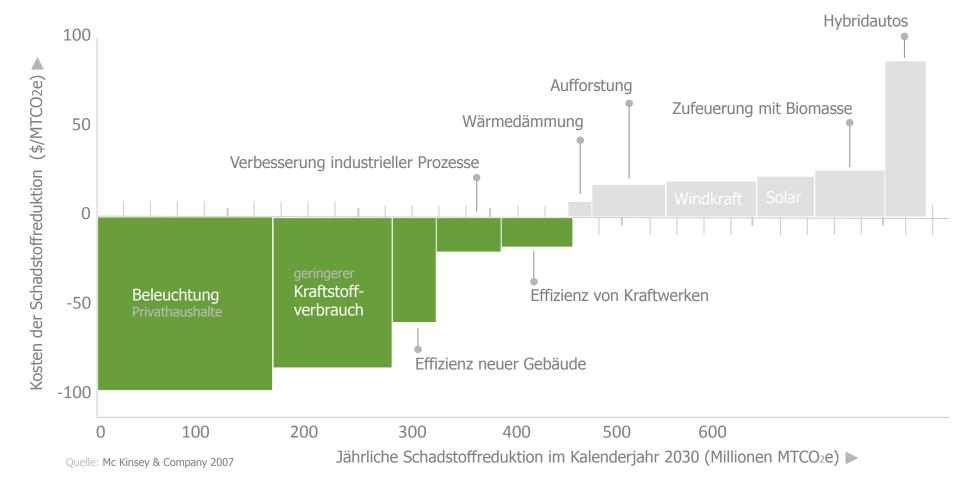
Preis

Nachhaltigkeit

Die Ingenieurssicht

Ingenieurssicht

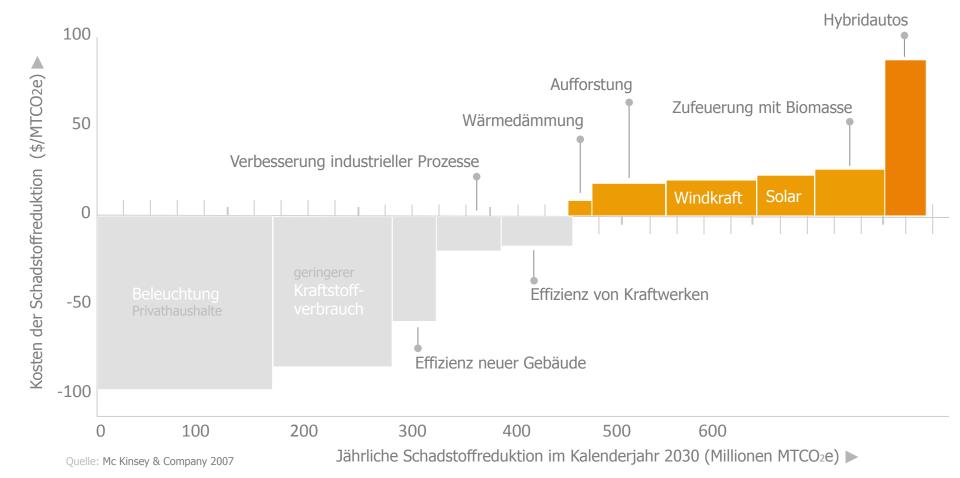
Stadt Mittlere Distanz Langstrecke


BEV Plug-In Hybrid

Diesel

Schätzung der Kosteneffektivität

Möglichkeiten der Reduktion von Schadstoffemissionen in den USA



Schätzung der Kosteneffektivität

Möglichkeiten der Reduktion von Schadstoffemissionen in den USA

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

Infrastruktur

Preis

Nachhaltigkeit

Die Ingenieurssicht

Die Kundensicht

Umbruchzeiten

Elektronik 7% / Jahr (۱۹۱۷)

🔲 Informatik 70% / Jahr

Pferd < 10 Jahre

Röhrenfernseher < 5 Jahre Flachbildschirm

Analogkamera < 5 Jahre

Digitalkamera

Umbruchzeiten

Elektronik 7% / Jahr 🙌 🙋

Battery Electric Vehicle

Röhrenfernseher < 5 Jahre Flachbildschirm

Analogkamera < 5 Jahre Digitalkamera

5th Avenue, New York (1900)

5th Avenue, New York (1900)

5th Avenue, New York (1913)

5th Avenue, New York (1913)

RIP Probleme [Reichweite, Infrastruktur, Preis]

Was wird der Kunde tun, wenn...

- die Ladeinfrastruktur noch fehlt?
- die Hersteller nicht genügend Stückzahl liefern können?
- die Kosten noch etwas zu hoch sind?

er wird warten!

Status der Elektromobilität 2018

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

Infrastruktur

Preis

Nachhaltigkeit

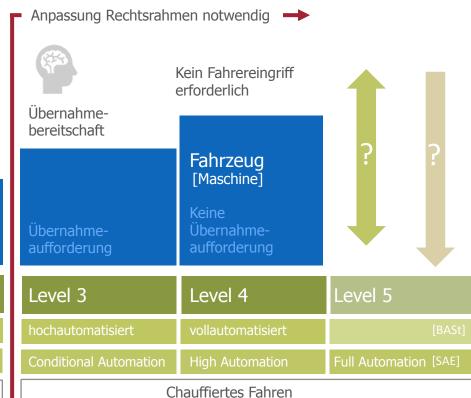
Die Ingenieurssicht

Die Kundensicht

Einfluss des autonomen Fahrens und der Mobilität

Angekündigte Level

Verkehrsüberwachung


nur Antriebssystem

Längs- oder Querführung

Querführung

nur FahrerassistiertteilautomatisiertNo AutomationDriver AssistancePartial Automation	Level 0	Level 1	Level 2
No Automation Driver Assistance Partial Automation	nur Fahrer	assistiert	teilautomatisiert
	No Automation	Driver Assistance	Partial Automation

Assistiertes Fahren

Fahrer ist Rückfallebene

System ist Rückfallebene

Angekündigte Level

ZOOX

Interieur des ZOOX

Waymo Fahrzeuge

Audi [2019] Daimler BMW [2021]

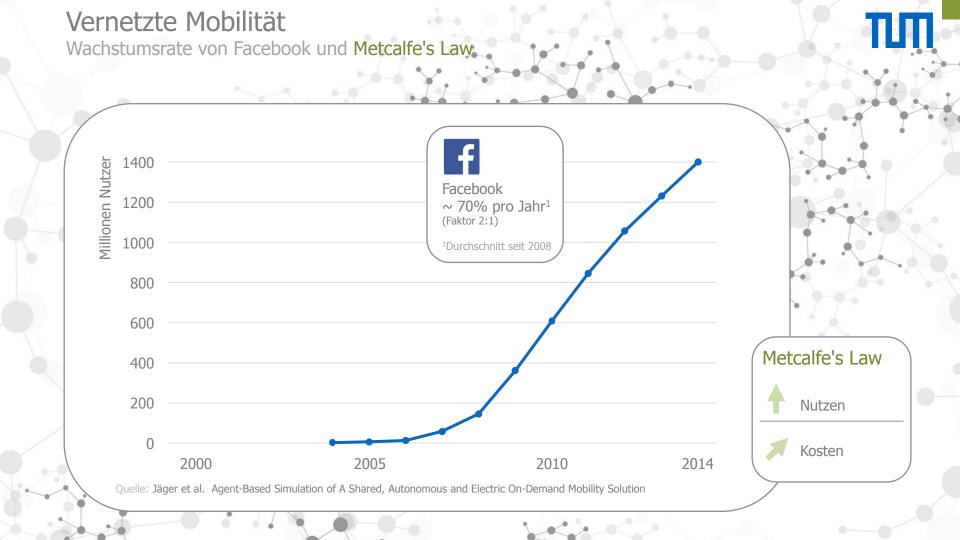
ZOOX Moia Waymo [2018]

Level 3	Level 4	Level 5
hochautomatisiert	vollautomatisiert	[BASt]
Conditional Automation	High Automation	Full Automation [SAE]

Chauffiertes Fahren

System ist Rückfallebene

Deep Learning



Status der Elektromobilität 2018

Relevante Megatrends

Mögliche Energieträger

Herausforderungen batterieelektrischer Fahrzeuge (BEV)

Reichweite

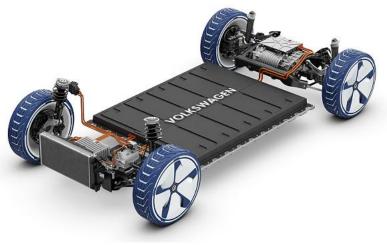
Infrastruktur

Preis

Nachhaltigkeit

Die Ingenieurssicht

Die Kundensicht


Einfluss des autonomen Fahrens und der Mobilität

Konsequenzen für Hersteller

Hersteller: BEV Purpose Design

Hersteller: Investition für Massenfertigung

Zulieferer: Gewinner und Verlierer

► Elektroautos sind technisch umsetzbar

➤ Ab 2020 sind Elektrofahrzeuge für zahlreiche Anwendungen auch betriebswirtschaftlich sinnvoll

[total cost of ownership]

▶ Der Kunde wird es entscheiden und das neue Produkt haben wollen

Wenn dann der Markt nicht liefern kann, wird der Kunde warten

Publikationen

Status Electromobility 2016 or how Tesla will not win

STATUS ELECTRO-MOBILITY 2016 OR HOW TESLA WILL NOT WIN

The outlook up to 2025 indicates a rapid revolution of the previous world of the automobile

ABSTRACT

The time has come: The Electromobility revolution has started. How does this look? How fast will it take place? Where will it start? Who is well-prepared for it? Who can be successful?

Markus Lienkamp

Status Elektromobilität 2018: Der Kunde wird es entscheiden

STATUS ELEKTROMOBILITÄT

2018: DER KUNDE WIRD ES

ENTSCHEIDEN

Zwischen 2020 und 2025 werden die Karten neu gemischt

EXPOSÉ

Vom Hype zur Revolution: Spätestens 2025 werden Elektrofahrzeuge billiger sein als von Verbrennungsmotoren betriebene Fahrzeuge. Zudem drohen Fahrverbote. Wer wird dann überhaupt noch die "alte" Technologie kaufen? Es kann schon ab 2020 zu einer jahrelangen Kaufzurückhaltung kommen, solange die Automobilindustrie weder ausreichend Elektrofahrzeuge liefern kann noch genügend Ladestationen zur Verfügung stehen.

Markus Lienkamp, Thomas Pöck, Florian Homm

Ansprechpartner

Prof. Dr. Markus Lienkamp Technische Universität München Lehrstuhl für Fahrzeugtechnik +49 89 289 15345 lienkamp@ftm.mw.tum.de